Problem 3

Suppose a metal rod loses heat across the lateral boundary according to the equation

$$
u_{t}=\alpha^{2} u_{x x}-\beta u \quad 0<x<1
$$

and suppose we keep the ends of the rod at $u(0, t)=1$ and $u(1, t)=1$. Find the steady-state temperature of the rod (graph it). Where is heat flowing in this problem?

Solution

Take advantage of the fact that the heat equation is linear: Assume the solution for the temperature $u(x, t)$ has a steady component and a transient component.

$$
u(x, t)=R(x)+U(x, t)
$$

Substitute this formula into the PDE.

$$
\frac{\partial}{\partial t}[R(x)+U(x, t)]=\alpha^{2} \frac{\partial^{2}}{\partial x^{2}}[R(x)+U(x, t)]-\beta[R(x)+U(x, t)]
$$

Evaluate the derivatives.

$$
U_{t}=\alpha^{2}\left[R^{\prime \prime}(x)+U_{x x}\right]-\beta[R(x)+U(x, t)]
$$

If we set

$$
\alpha^{2} R^{\prime \prime}(x)-\beta R(x)=0,
$$

then the previous equation becomes

$$
U_{t}=\alpha^{2} U_{x x}-\beta U .
$$

Now substitute the formula for $u(x, t)$ into the boundary conditions.

$$
\begin{array}{lll}
u(0, t)=1 & \rightarrow & R(0)+U(0, t)=1 \\
u(1, t)=1 & \rightarrow & R(1)+U(1, t)=1
\end{array}
$$

Set $R(0)=1$ and $R(1)=1$ so that $U(0, t)=0$ and $U(1, t)=0$. Solve the ODE for the steady-state temperature.

$$
R^{\prime \prime}(x)=\frac{\beta}{\alpha^{2}} R(x)
$$

Since the rod is losing heat along its lateral sides, $\beta>0$. That means the general solution for $R(x)$ can be written in terms of hyperbolic sine and hyperbolic cosine.

$$
R(x)=C_{1} \cosh \left(\frac{\sqrt{\beta}}{\alpha} x\right)+C_{2} \sinh \left(\frac{\sqrt{\beta}}{\alpha} x\right)
$$

Apply the two boundary conditions to determine C_{1} and C_{2}.

$$
\begin{aligned}
& R(0)=C_{1}=1 \\
& R(1)=C_{1} \cosh \left(\frac{\sqrt{\beta}}{\alpha}\right)+C_{2} \sinh \left(\frac{\sqrt{\beta}}{\alpha}\right)=1
\end{aligned}
$$

Solving this system yields

$$
C_{1}=1 \quad \text { and } \quad C_{2}=\frac{1-\cosh \left(\frac{\sqrt{\beta}}{\alpha}\right)}{\sinh \left(\frac{\sqrt{\beta}}{\alpha}\right)} .
$$

Therefore, the steady-state temperature is

$$
R(x)=\cosh \left(\frac{\sqrt{\beta}}{\alpha} x\right)+\frac{1-\cosh \left(\frac{\sqrt{\beta}}{\alpha}\right)}{\sinh \left(\frac{\sqrt{\beta}}{\alpha}\right)} \sinh \left(\frac{\sqrt{\beta}}{\alpha} x\right) .
$$

To get an idea what this looks like, graph $R(x)$ versus x with $\alpha=1$ and $\beta=1$.

According to Fourier's law of heat conduction, the heat flux is given by

$$
q=-\alpha^{2} \frac{\partial u}{\partial x} .
$$

Wherever the slope of the temperature curve is negative, the heat flows in the positive x-direction. And wherever the slope of the temperature is positive, the heat flows in the negative x-direction. In the graph above, heat flows in the positive x-direction for $0<x<0.5$ and flows in the negative x-direction for $0.5<x<1$.

